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Abstract The present investigation is concerned with a two-dimensional problem
in electromagnetic micropolar elasticity for a half-space whose surface is subjected
to distributed (concentrated or continuous) thermo-mechanical sources in the pres-
ence of a transverse magnetic field. As an application of the approach, the sources are
taken as uniformly or linearly distributed. Laplace and Fourier transform techniques
are used to solve the problem. The integral transforms have been inverted by using
a numerical technique to obtain the components of normal strain, normal stress, tan-
gential couple stress, and temperature distribution in the physical domain. Magnetic
effects on the components of normal strain, normal stress, tangential couple stress,
and temperature distribution have been depicted graphically for two different theo-
ries of generalized thermoelasticity, Lord and Shulman (L–S) theory and Green and
Lindsay (G–L) theory. A particular case of interest is also deduced from the present
investigation.

Keywords Magneto-micropolar thermoelasticity · Integral transforms ·
Thermo-mechanical sources

1 Introduction

The theory of magneto-elasticity was developed with the possibility of extensive
practical applications in diverse fields such as geophysics, optics, acoustics, plasma
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physics, etc. Surveys of relevant magneto-elasticity theories were presented by Knopoff
[1], Banos [2], Chadwick [3], Purushothama [4], and Willson [5]. It is assumed that
the electro-magnetic field influences the electric field by entering the elastic stress
equation of motion as a body force called the Lorentz force. Then, the elastic field, in
turn, influences the electromagnetic fields through modifications of Ohm’s law. Con-
sequently, such problems have been the subject of active research over the last few
decades.

Modern engineering structures are often made of materials possessing an internal
structure. Polycrystalline materials and materials with fibrous or coarse grain struc-
ture fall in this category. Classical elasticity is inadequate to represent the behavior
of such materials. The analysis of such materials requires incorporation of the the-
ory of oriented media. “Micropolar elasticity,” as termed by Eringen [6], is used to
describe deformation of elastic media with oriented particles. A micropolar continuum
is a collection of interconnected particles in the form of small rigid bodies undergo-
ing both translational and rotational motions. Typical examples of such materials are
granular media and multi-molecular bodies, whose microstructures act as an evident
part in their macroscopic responses. The physical nature of these materials needs an
asymmetric description of deformation, while theories for classical continua fail to
accurately predict their physical and mechanical behavior. For this reason, micropo-
lar theories were developed by Eringen [6–8] for elastic solids, fluids, and also for
nonlocal polar fields and are now universally accepted.

The classic theory of thermoelasticity is based on Fourier’s law which predicts an
infinite speed of heat propagation. In order to eliminate this paradox of an infinite
speed of thermal propagation, two generalizations to the coupled theory have been
considered.

The first is due to Lord and Shulman [9], who introduced the theory of generalized
thermoelasticity with one relaxation time. This theory is based on a new law of heat
conduction to replace Fourier’s law. The heat equation is replaced by a hyperbolic one
which ensures finite speeds of propagation for heat and elastic waves.

The theory of generalized thermoelasticity with two relaxation times was first intro-
duced by Muller [10]. A more explicit version was then introduced by Green and Laws
[11], Green and Lindsay [12], and independently by Suhubi [13]. In this theory the
temperature rates are considered among the constitutive variables. This theory also
predicts finite speeds of propagation as in Lord and Shulman’s theory. It differs from
the latter in that Fourier’s law of heat conduction is not violated if the body under
consideration has a center of symmetry.

Kalaski [14] derived the basic equation of thermo-magneto-micropolar elasticity.
Kalaski and Nowacki [15] investigated the wave type of equations of thermo-mag-
neto-micropolar elasticity. Nowacki [16] studied some problems of micropolar mag-
neto-elasticity. Charderasekhariah [17,18] investigated magneto-thermal-elastic plane
waves in micropolar elasticity. Ezzat and Youssef [19] investigated the problem of
magneto-thermo-elasticity in a perfectly conducting media. Baksi et al. [20] studied
magneto-thermo-elastic problems with thermal relaxation and heat sources in three-
dimensional infinite rotating elastic media. In spite of these studies, little work has
been carried out on the theory of magneto-micropolar thermoelasticity.
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The aim of the present study is to investigate the interaction in magneto-micro-
polar thermoelastic material due to uniformly or linearly (concentrated/continuous)
distributed thermo-mechanical sources.

2 Basic Equations

The simplified linear equations of electrodynamics of a slowly moving medium for a
homogeneous and perfectly conducting elastic solid are the following:

∇ × �h = �J + ε0
∂ �E
∂t
, (1)

∇ × �E = −µ0
∂ �h
∂t
, (2)

�E = −µ0

(
∂ �u
∂t

× �H0

)
, (3)

∇ · �h = 0. (4)

Maxwell stress components are given by

Ti j = µ0
(
Hi h j + Hj hi − Hkhkδi j

)
, (5)

where �H0 is the external applied magnetic field intensity vector, �h is the induced
magnetic field vector, �E is the induced electric field vector, �J is the current density
vector, �u is the displacement vector, µ0 and ε0 are the magnetic and electric perme-
abilities, respectively, Ti j ’s are the components of Maxwell stress tensor, and δi j is the
Kronecker delta.

Equations 1–4 are supplemented by the field of equations of motion and constitutive
relations in the theory of micropolar thermoelasticity, taking into account the Lorentz
force;

(λ+ 2µ+ K )∇ (∇ · �u)− (µ+ K )∇ × (∇ × �u)+ K
(
∇ × �φ

)

+ �F − ν

(
1 + τ1

∂

∂t

)
∇T = ρ

∂2 �u
∂t2 , (6)

(α + β + γ )∇
(
∇ · �φ

)
− γ∇ ×

(
∇ × �φ

)
+ K (∇ × �u)− 2K �φ = ρ j

∂2 �φ
∂t2 , (7)
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K ∗∇2T = ρc∗
(
∂

∂t
+ τ0

∂2

∂t2

)
T + νT0

(
∂

∂t
+ τ0n0

∂2

∂t2

)
(∇ · �u) , (8)

σi j = λur,rδi j + µ
(
ui, j + u j,i

) + K
(
u j,i − εi jrφr

) − ν

(
1 + τ1

∂

∂t

)
T δi j, (9)

mi j = αφr,rδi j + βφi, j + γφ j,i , (10)

where λ,µ, K , α, β, γ are the material constants, T is the temperature change, T0
is the uniform temperature, K ∗ is the thermal conductivity, c∗ is the specific heat at
constant temperature, ν = (3λ+ 2µ+ K ) αt , αt is the linear thermal expansion, τ0
and τ1 are thermal relaxation times, ρ is the density, j is the microinertia, �φ is the
microrotation vector, ∇ is the gradient operator, σi j are the components of the force
tensor, mi j are the components of couple stress tensor, εi jk is the alternate tensor, and
�F is the Lorentz force given by

�F = µ0

( �J × �H0

)
. (11)

For the L–S theory, τ1 = 0, n0 = 1; for the G–L theory, τ1 > 0, n0 = 0. The thermal
relaxation times, τ0 and τ1, satisfy the inequality τ1 � τ0 > 0 for G–L theory only.

In vacuum, contacting the micropolar elastic half space, the system of equations of
electrodynamics is

∇ × �h0 = ε0
∂ �E0

∂t
, (12)

∇ × �E0 = −µ0
∂ �h0

∂t
, (13)

∇ · �h0 = 0, (14)

where �h0 and �E0 are the induced magnetic and electric field vectors, respectively, in
vacuum. The above equations reduce to

(
∇2 − 1

c2

∂2

∂t2

)
�h0 = 0, (15)

where c is the velocity of light given by

c = 1√
µ0ε0

,

and ∇2 is the Laplacian operator.

123



Int J Thermophys (2009) 30:669–692 673

In this case, the Maxwell stress becomes

T 0
i j = µ0

(
Hi h

0
j + Hj h

0
i − Hkh0

kδi j

)
, (16)

and T 0
i j are the components of the Maxwell stress tensor in vacuum.

3 Formulation and Solution of the Problem

We consider a homogeneous, isotropic, perfectly conducting micropolar thermoelastic
half-space (y ≥ 0), in contact with vacuum, permeated by an initial magnetic field �H0

acting along the z-axis, in both the media. The rectangular Cartesian co-ordinate sys-
tem (x, y, z) having an origin on the surface y = 0, where the y-axis points vertically
into the medium is introduced.

For the two-dimensional problem, we assume the displacement vector �u and mi-
crorotation vector �φ as

�u = (u, v, 0) and �φ = (0, 0, φ3) (17)

We define the dimensionless quantities as

x ′ = ω̄

c1
x, y′ = ω̄

c1
y, u′ = ρc1ω̄

νT0
u, v′ = ρc1ω̄

νT0
v, σ ′

i j = σi j

νT0

T ′
i j = Ti j

νT0
, m′

i j = ω̄

c1νT0
mi j , t ′ = ω̄t, τ ′

1 = ω̄τ1, τ ′
0 = ω̄τ0, (18)

φ′
3 = ρc2

1

νT0
φ3, h′ = h

H0
, T ′ = T

T0
,

where

ω̄ = ρc∗c2
1

K ∗ , c2
1 = λ+ 2µ+ K

ρ
.

Using the expressions relating the displacement components u(x, y, t) and v(x, y, t)
to the scalar potential functions ψ1(x, y, t) and ψ2(x, y, t) in dimensionless form,

u = ∂ψ1

∂x
+ ∂ψ2

∂y
, v = ∂ψ1

∂y
− ∂ψ2

∂x
. (19)

and applying the Laplace and Fourier transforms defined by

f̄ (x, y, s) =
∞∫

0

e−st f (x, y, t)dt,
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and

f̃ (ξ, y, s) =
∞∫

−∞
eiξ x f̄ (x, y, s) dx, (20)

on Eqs. 6–8 and 15 and with the help of Eqs. 1, 3, 11, 17, and 18, we obtain

(
d4

dy4 + A
d2

dy2 + B

)
ψ̃1 = 0, (21)

(
d4

dy4 + C
d2

dy2 + D

)
ψ̃2 = 0, (22)

(
d2

dy2 − λ2
5

)
h̃0 = 0, (23)

where

A = −2ξ2 − s

(1 + a1)
{1 + a1 + a3ε} − s2

(1 + a1)
{a4 + (1 + a1)τ0 + a3ε(τ1 + n0τ0)},

B = ξ4 + sξ2

(1 + a1)
{1 + a1 + a3ε} + s2ξ2

(1 + a1)
{a4 + (1 + a1)τ0 + a3ε(τ1 + n0τ0)}

+ a4

(1 + a1)
(τ0s4 + s3),

C = −2ξ2 + 1

a1
(a5 − a1a6)− s2

a1
(a4 + a1a7),

D = ξ4 − ξ2

a1
(a5 − a1a6)+ s2ξ2

a1
{a4 + a1a7)+ s4

a1
a4a7 + s2

a1
a4a6,

and

a1 = µ+ K

λ+ µ+ µ0 H2
0

, a2 = K

λ+ µ+ µ0 H2
0

, a3 = ρ c2
1

λ+ µ+ µ0 H2
0

,

a4 = ρ + ε0µ
2
0 H2

0

λ+ µ+ µ0 H2
0

c2
1, a5 = K c2

1

γ ω̄2 , a6 = 2
K c2

1

γ ω̄2 , a7 = ρ j

γ
c2

1.

The solutions of Eqs. 21–23 satisfying the radiation conditions that ψ̃1, ψ̃2, h̃0, T̃ , and
φ̃3 tend to zero as y tends to infinity can be written as

ψ̃1 = A1e−λ1 y + A2e−λ2 y, (24)
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ψ̃2 = B1e−λ3 y + B2e−λ4 y, (25)

h̃0 = Ce−λ5 y, (26)

T̃ = m1 A1e−λ1 y + m2 A2e−λ2 y, (27)

φ̃3 = m3 B1e−λ3 y + m4 B2e−λ4 y, (28)

where

λ2
1, λ

2
2 = 1

2

(
A ±

√
A2 − 4B

)
, λ2

3, λ
2
4 = 1

2

(
C ±

√
C2 − 4D

)
, λ2

5 = ξ2 + c2
1

c2 s2,

m1 = λ2
1 − E

F
, m2 = λ2

2 − E

F
, m3 = λ2

3 − G

H
, m4 = λ2

4 − G

H
,

and

E = ξ2 + a4

(1 + a1)
s2, F = a3

(1 + a1)
(1 + τ1s),

G = ξ2 + a4

a1
s2, H = −a2

a1
.

4 Boundary Conditions

4.1 Mechanical Boundary Conditions

The boundary surface is subjected to a normal force

(i)
σ22 + T22 − T 0

22 = −P1 f1(x, t), (29)

(ii)
σ21 = 0, (30)

(iii)
m23 = 0, (31)

where P1 is the magnitude of the force, f1(x, t) is the known function, and T22, T 0
22

are components of the Maxwell stress tensor in a magneto-micropolar thermoelastic
medium and vacuum, respectively.

4.2 Thermal Boundary Conditions

(iv) The temperature at the boundary surface y = 0 is expressed as

T = P2 f2(x, t), (32)

where P2 is the constant temperature applied on the boundary and f2(x, t) is
the known function.
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(v) The transverse components of the magnetic field intensity are continuous
across the boundary surface y = 0;

h(x, 0, t) = h0(x, 0, t). (33)

(vi) The transverse components of the electric field intensity are continuous across
the boundary surface y = 0;

E1(x, 0, t) = E0
1(x, 0, t). (34)

Since the relative permeabilities are very nearly unity, it follows from Eqs. 5, 16, and
33 that T22 = T 0

22 and the condition in Eq. 29 reduces to

σ21 = −P1 f1(x, t). (35)

Applying the Laplace and Fourier transforms defined by Eq. 20 on boundary con-
ditions in Eqs. 29–35 and with the help of Eqs. 3, 5, 9, 10, 16–18 and considering
P ′

1 = P1
νT0
, P ′

2 = P2
T0

(after suppressing the dashes), we obtain the components of nor-
mal strain, stresses, temperature distribution, and induced magnetic field (in vacuum)
as

ẽ22 = 1

�

[
λ2

1�1e−λ1 y + λ2
2�2e−λ2 y − iξ

(
λ3�3e−λ3 y + λ4�4e−λ4 y)] , (36)

σ̃22 = 1

�

[(
λ2

1 − ξ2a8 − τm1

)
�1e−λ1 y +

(
λ2

2 − ξ2a8 − τm2

)
�2e−λ2 y

− (a8 − 1) iξ
(
λ3�3e−λ3 y + λ4�4e−λ4 y) ]

, (37)

σ̃21 = 1

�

[
iξ (a9 + a10)

{
λ1�1e−λ1 y + λ2�2e−λ2 y}

+
(
ξ2a9 + λ2

3a10 + m3a11

)
�3e−λ3 y

+
(
ξ2a9 + λ2

4a10 + m4a11

)
�4e−λ4 y

]
, (38)

m̃23 = 1

�

[−λ3m3�3e−λ3 y − λ4m4�4e−λ4 y] , (39)

T̃ = 1

�

[
m1�1e−λ1 y + m2�2e−λ2 y] , (40)

h̃0 = 1

�
�5e−λ5 y, (41)

where

� = a12λ5(m3λ3 − m4λ4)
[{
ξ2 + (a9 + a10)+ a11m4

} {
(λ2

1m2 − λ2
2m1)

+ξ2a8(m1 − m2)
}

− ξ2λ4(a8 − 1)(a9 + a10)

×(λ2m1 − λ1m2)
]

− a12λ5m4λ4 [a11(m3 − m4)
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×
{
(λ2

1m2 − λ2
2m1)+ ξ2a8(m1 − m2)

}

−ξ2(a8 − 1)(λ3 − λ4)(a9 + a10)(λ2m1 − λ1m2)
]
,

�1 = a12λ5

[{
P1 f̃1(ξ, s)m2 + P2 f̃2(ξ, s)(λ2

2 − ξ2a8 − τ m2)
}

×
{
ξ2(a9 + a10)(m4λ4 − m3λ3)+ a11m3m4(λ4 − λ3)

}

−P2 f̃2(ξ, s)ξ2(a9 + a10)(a8 − 1)λ2λ3λ4(m3 − m4)
]
,

�2 = −a12λ5

[{
P1 f̃1(ξ, s)m1 + P2 f̃2(ξ, s)(λ2

1 − ξ2a8 − τ m1)
}

×
{
ξ2(a9 + a10)(m4λ4 − m3λ3)+ a11m3m4(λ4 − λ3)

}

−P2 f̃2(ξ, s)ξ2(a9 + a10)(a8 − 1)λ1λ3λ4(m3 − m4)
]
,

�3 = a12λ5iξm4λ4(a9 + a10)
[

P1 f̃1(ξ, s)(λ2m1 − λ1m2)+ P2 f̃2(ξ, s)

×
{
(λ2

1 − ξ2a8 − τ m1)λ2

− (λ2
2 − ξ2a8 − τ m2)λ1

}]
,

�4 = −a12λ5iξm3λ3(a9 + a10)
[

P1 f̃1(ξ, s)(λ2m1 − λ1m2)+ P2 f̃2(ξ, s)

×
{
(λ2

1 − ξ2a8 − τ m1)λ2

− (λ2
2 − ξ2a8 − τ m2)λ1

}]
,

�5 = −a11s2m3m4(λ3 − λ4)
[

P1 f̃1(ξ, s)(λ2m1 − λ1m2)+ P2 f̃2(ξ, s)

×
{
(λ2

1 − ξ2a8 − τ m1)λ2

− (λ2
2 − ξ2a8 − τ m2)λ1

}]
,

and

τ = 1 + τ1s, a8 = λ

λ+ 2µ+ K
, a9 = µ

λ+ 2µ+ K
,

a10 = µ+ K

λ+ 2µ+ K
, a11 = K

λ+ 2µ+ K
, a12 = ρ c2

νT0
.

5 Applications

We take f1(x, t) and f2(x, t) as

( f1(x, t), f2(x, t)) =
{
(g1(x), g2(x))δ(t) for concentrated source,
(g1(x), g2(x))H(t) for continuous source

(42)
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where δ(t) is the Dirac delta function and H(t) is the Heaviside distribution function.
g1(x) and g2(x) are known functions.

5.1 Uniformly Distributed Source (Concentrated or Continuous)

In this case,

(g1(x), g2(x)) =
{

1 if |x | ≤ a,
0 if |x | > a

(43)

where a is the dimensionless strip width. With the help of Eqs. 18 and 20, the Laplace
and Fourier transforms of Eqs. 42 and 43 are given by (where Laplace and Fourier
transforms of δ(t) and H(t) are 1 and 1/s, respectively)

( f̃1(ξ, s), f̃2(ξ, s))=
{
(2 sin(ξ a)/ξ), ξ 	= 0 for concentrated source,

(2 sin(ξ a)/ξ) · 1/s, ξ 	= 0 for continuous source
(44)

5.2 Linearly Distributed Source (Concentrated or Continuous)

In this case,

(g1(x), g2(x)) =
{

1 − |x |
a if |x | ≤ a,

0 if |x | > a
(45)

With the help of Eqs. 18 and 20, the Laplace and Fourier transforms of Eqs. 42 and
45 are given by

( f̃1(ξ, s), f̃2(ξ, s)) =
{

2[1 − cos(ξ a)]/ξ2a, for concentrated source,
2[1 − cos(ξ a)]/sξ2a, for continuous source

(46)

The corresponding solutions are obtained for a uniformly and linearly (concentrated
or continuous) distributed source by substituting the values of f̃1(ξ, s) and f̃2(ξ, s)
from Eqs. 44 and 46 in Eqs. 36–41.

5.3 Particular Case

If H0 → 0 in Eqs. 36–41, we obtain the components of displacements and stresses in
a micropolar thermoelastic medium with the following changed values of a1, a2, a3,
and a4 as

a1 = µ+ K

λ+ µ
, a2 = K

λ+ µ
, a3 = a4 = λ+ 2µ+ K

λ+ µ
.
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6 Inversion of the Transforms

To obtain the solution of the problem in the physical domain, we must invert the trans-
forms in Eqs. 24–28 and 36–41, for the L–S and G–L theories of thermoelasticity.
These expressions are functions of y, the parameters of Laplace and Fourier trans-
forms s and ξ , respectively, and hence are of the form f̃ (ξ, y, s). To get the function
f̄ (x, y, s) in the physical domain, first we invert the Fourier transform using

f̄ (x, y, s) = 1

2π

∞∫
−∞

e−iξ x f̃ (ξ, y, s)dξ = 1

π

∞∫
0

(cos(ξ x) fe − i sin(ξ x) f0) dξ,

(47)

where fe and f0 are, respectively, even and odd parts of the function f̃ (ξ, y, s). Thus,
Eq. 47 gives us the Laplace transform f̄ (x, y, s) of the function f (x, y, t).

Then, for the fixed values of ξ, x , and y, f̄ (x, y, s)in Eq. 47 can be considered as
the Laplace transform ḡ(s) of g(t). Following Honig and Hirdes [21], the Laplace
transformed function ḡ(s) can be inverted as given below. The function g(t) can be
obtained by using

g(t) = 1

2π i

X+i∞∫
X−i∞

est ḡ(s) ds, (48)

where X is an arbitrary real number greater than all the real parts of the singularities
of ḡ(s). Taking s = X + i z, we get

g(t) = eXt

2π i

∞∫
−∞

ei t z ḡ(X + i z) dz. (49)

Now, taking e−Xt g(t) as h(t) and expanding it as a Fourier series in [0, 2L], we obtain
approximately the formula,

g(t) = g∞(t)+ ED,

where

g∞(t) = X0

2
+

∞∑
k=1

Xk, 0 ≤ t ≤ 2L ,

and

Xk =
(

eXt

L

)
Re

[
e

ikπ t
L ḡ

(
X +

(
ikπ

L

))]
. (50)
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ED is the discretization error and can be made arbitrarily small by choosing X suffi-
ciently large. The values of X and L are chosen according to the criteria outlined by
Honig and Hirdes [21].

Since the infinite series in Eq. 50 can be summed up only to a finite number of N
terms, the approximate value of g(t) becomes

gN (t) = X0

2
+

N∑
k=1

Xk, 0 ≤ t ≤ 2L . (51)

Now, we introduce a truncation error ET, that must be added to the discretization error
to produce the total approximate error in evaluating g(t) using the above formula. To
accelerate the convergence, the discretization error and then the truncation error are
reduced by using the ‘Korrecktur method’ and the ‘ε-algorithm,’ respectively, as given
by Honig and Hirdes [21].

The Korrecktur method formula, to evaluate the function g(t), is

g(t) = g∞(t)− e−2X L g∞(2L + t)+ E ′
D,

where

∣∣E ′
D

∣∣ � |ED| .

Thus, the approximate value of g(t) becomes

gNk (t) = gN (t)− e−2X L gN ′(2L + t), (52)

where N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm, which is used to accelerate the convergence

of the series in Eq. 51. Let N be an odd natural number and Sm = ∑m
k=1 Xk be the

sequence of partial sums of Eq. 51. We define the ‘ε-sequence’ by

ε0,m = 0, ε1,m = Sm, εn+1,m = εn−1,m+1 + 1

εn,m+1 − εn,m
, n,m = 1, 2, 3. . .

The sequence ε1,1, ε3,1, . . ., εN ,1 converges to g(t)+ED− X0
2 faster than the sequence

of partial sums Sm,m = 1, 2, 3. . .. The actual procedure to invert the Laplace trans-
form consists of Eq. 52 together with the ‘ε-algorithm’.

The last step is to calculate the integral in Eq. 47. The method for evaluating this
integral is described in Press et al. [22], which involves the use of Romberg’s integra-
tion with an adaptive step size. This also uses the results from successive refinements
of the extended trapezoidal rule followed by extrapolation of the results to the limit
when the step size tends to zero.
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7 Numerical Results and Discussion

The analysis is conducted for a magnesium crystal-like material. Following Ref. [23],
the values of the physical constants are

λ = 9.4 × 1010 N · m−2, µ = 4.0 × 1010 N · m−2, K = 1.0 × 1010 N · m−2,

ρ = 1.74 × 103 kg · m−3, γ = 0.779 × 10−9 N, j = 0.2 × 10−19 m2.

The thermal parameters are given by

c∗ = 1.04 × 103 J · kg−1 · K−1, K ∗ = 1.7 × 102 J · m−1 · s−1 · K−1,

ν = 2.68 × 106 N · m−2 · K−1, T0 = 296 K , , τ0 = 0.02, τ1 = 0.05

In numerical calculations, we considered the magnetic interference wave speed

a0 =
√
µ0 H2

0

ρ
= 103 m · s−1,

and

c = 3 × 108 m · s−1, µ0 = 4π × 10−7 H · m−1, ε0 = 1/36π × 10−9 F · m−1.

The computations are carried out for the dimensionless time t = 0.5 and dimensionless
strip width a = 0.3, in the range 0 ≤ x ≤ 10. The distribution of the dimensionless
normal strain e22, the dimensionless normal stress, σ22, the dimensionless tangential
couple stress m23, and the dimensionless temperature distribution T with the dimen-
sionless distance ‘x’ have been shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16. The solid line and dashed line, for a magneto-micropolar thermoelastic
medium, are represented as MMT1 (for L–S theory) and MMT2 (for G–L theory),
respectively. The solid line with circles and dashed line with triangles, for micropolar
thermoelastic medium are, represented as MT1 (for L–S theory) and MT2 (for G–L
theory), respectively.

7.1 Uniformly Distributed Source

The variations of the normal strain e22, normal stress σ22, tangential couple stress m23,
and temperature distribution T with distance ‘x’ for MMT1, MMT2, MT1, and MT2,
when a concentrated source is applied are shown in Figs. 1, 2, 3, and 4, respectively,
and when a continuous source is applied are shown in Figs. 5, 6, 7, and 8, respectively.

7.1.1 Concentrated Source

Figure 1 depicts the variation of the normal strain e22, and it is noted that its value is
larger in the initial range 0 ≤ x ≤ 1, for MMT1 as compared to the value for MMT2;
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Fig. 1 Variation of normal strain e22 for magneto-micropolar thermoelastic medium, represented as MMT1
(for L–S theory) and MMT2 (for G–L theory), and for micropolar thermoelastic medium, represented as
MT1 (for L–S theory) and MT2 (for G–L theory), with distance x
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Fig. 2 Variation of normal stress σ22 with distance x ; symbols same as in Fig. 1
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Fig. 3 Variation of tangential couple stress m23 with distance x ; symbols same as in Fig. 1
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Fig. 4 Variation of temperature distribution T with distance x ; symbols same as in Fig. 1
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Fig. 5 Variation of normal strain e22 with distance x ; symbols same as in Fig. 1

0 2 4 6 8 10

DISTANCE  x

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

N
O

R
M

A
L 

S
T

R
E

S
S

 σ
22

  

MMT1

MMT2

MT1

MT2

Fig. 6 Variation of normal stress σ22 with distance x ; symbols same as in Fig. 1

and the behavior is reversed as x increases further in the range 1 ≤ x ≤ 3. Very near
to the point of application of the source, the value of the normal strain e22 is large for
MT1 as compared to the value for MT2; and as x increases further, the variation of
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Fig. 7 Variation of tangential couple stress m23 with distance x ; symbols same as in Fig. 1
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Fig. 8 Variation of temperature distribution T with distance x ; symbols same as in Fig. 1

the normal strain e22 is oscillatory for MT1 and MT2. The value of the normal strain
e22 for MMT2 has been shown in Fig. 1 by multiplying its original value by 10−1. It
is observed from Fig. 2 that very near to the point of application of the source, due
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Fig. 9 Variation of normal strain e22 with distancex ; symbols same as in Fig. 1
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Fig. 10 Variation of normal stress σ22 with distance x ; symbols same as in Fig. 1
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Fig. 11 Variation of tangential couple stress m23 with distance x ; symbols same as in Fig. 1
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Fig. 12 Variation of temperature distribution T with distance x ; symbols same as in Fig. 1
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Fig. 13 Variation of normal strain e22 with distancex ; symbols same as in Fig. 1
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Fig. 14 Variation of normal stress σ22 with distance x ; symbols same as in Fig. 1
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Fig. 15 Variation of tangential couple stress m23 with distance x ; symbols same as in Fig. 1
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Fig. 16 Variation of temperature distribution T with distance x ; symbols same as in Fig. 1

to the magnetic effect, the value of the normal stress σ22 is very small for MMT2 as
compared to the value for MT2, but its value is slightly larger for MMT1 as compared
to the value for MT1, and as x increases further, the variation is oscillatory in nature.
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Figure 3 depicts that initially, the value of the tangential couple stress m23 is larger
with the magnetic effect for MMT1 and MMT2 as compared to that without the
magnetic effect for MT1 and MT2. As ‘x’ increases further, it shows an oscillatory
behavior. The values of the tangential couple stress m23 are shown in Fig. 3, the original
values of which have been downscaled through multiplication by 10−1 and 10−3 for
the cases of MT1 and MT2, respectively. It is observed from Fig. 4 that, very near to
the application of the source, the value of the temperature distribution T is larger for
MMT2 as compared to the value for MMT1 and then starts oscillating with an increase
in distance x . The variation of the temperature distribution T for MT1 and MT2 is
similar over the whole range, except the peak value of the temperature distribution is
larger for MT1 as compared to MT2 in the range 1 ≤ x ≤ 3.

7.1.2 Continuous Source

Figure 5 depicts that in the initial range 0 ≤ x ≤ 2, the values of the normal strain e22
are large for MMT2 and slightly large for MMT1 as compared to the values for MT2
and MT1, respectively, and as ‘x’ increases further, the variation is oscillatory. The
values of the normal strain e22 for MMT2 and MT2 are shown in Fig. 5 by multiplying
the original values by 10. From Fig. 6 we observe that, due to the magnetic effect, the
values of the normal stress σ22 are large for MMT1 and MMT2 in comparison with
MT1 and MT2, respectively, and the value for MT2 is very small as compared to the
value for MT1 initially in the range 0 ≤ x ≤ 2, and then starts oscillating with an
increase in distance x . The values of the normal stress σ22 for MMT2 and MT2 are
shown in Fig. 6 by multiplying the original values by 10.

The variation of the tangential couple stress m23, depicted in Fig. 7, shows that
initially in the range 0 ≤ x ≤ 1, due to the magnetic effect, the value of the tangential
couple stress m23 is very small for MT2 in comparison to the value for MMT2, but
in this range, the value is slightly larger for MMT1 in comparison to the value for
MT1. In the range 1 ≤ x ≤ 3, the peak value is larger for MT2 in comparison to
the value for MT1. As ‘x’ increases further, the behavior is oscillatory. The value
of the tangential couple stress m23 for MMT2 is shown in Fig. 7 by multiplying its
original value by 10. Figure 8 depicts that due to the magnetic effect, the values of the
temperature distribution T are small for MMT1 and MMT2 in comparison with MT1
and MT2, respectively, and the value for MT2 is very large as compared to the value
for MT1 initially in the range 0 ≤ x ≤ 2, and then starts oscillating with an increase
in distance x . The values of the temperature distribution T for MMT2 and MT2 are
shown in Fig. 8 by multiplying the original values by 10.

7.2 Linearly Distributed Source

The variations of the normal strain e22, normal stress σ22, tangential couple stress
m23, and temperature distribution T with distance ‘x’ for MMT1, MMT2, MT1, and
MT2, when a concentrated source is applied, are shown in Figs. 9, 10, 11, and 12,
respectively, and when a continuous source is applied, are shown in Figs. 13, 14, 15,
and 16, respectively.
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7.2.1 Concentrated Source

Figures 9, 10, 11, and 12 depict that the variations of the normal strain e22, normal
stress σ22, tangential couple stress m23, and temperature distribution T are of a sim-
ilar nature as in the case of a uniformly distributed source, with a difference in their
magnitude. From Fig. 11, we observe that the variation of the tangential couple stress
m23 for MT1 is changed in the range 8 ≤ x ≤ 10.

7.2.2 Continuous Source

Figures 13, 14, 15, and 16 depict that the variation of the normal strain e22, normal
stress σ22, tangential couple stress m23, and temperature distribution T are of simi-
lar nature as in the case of a uniformly distributed source, with a difference in their
magnitude.

8 Conclusion

The Laplace and Fourier transform techniques are used to derive the components of
normal strain, normal stress, tangential couple stress, and temperature distribution.

The behaviors of variations of normal strain, normal stress, tangential couple stress,
and temperature distribution for both theories of generalized thermoelasticity, for a
uniformly distributed source (concentrated or continuous) and a linearly distributed
source (concentrated or continuous), are of similar nature with a difference in their
magnitude.
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